Вступ
Перехід вищих навчальних закладів на кредитно-модульну систему навчання, за якою 1/3 навчального часу відводиться на самостійну роботу, зумовив модернізацію навчального процесу, яка була б адекватною вимогам сьогодення. Це можливо зробити шляхом впровадження ІКТ у навчальний процес. Здійснення інформатизації освіти – один із шляхів модернізації навчально-виховного процесу.
Сформовані вимоги стосуються і дисципліни «Математика».

При вивченні математики студентами I курсу вищих навчальних закладів I–II рівнів акредитації деякі теми виносяться на самостійне вивчення. До методичних рекомендацій входять дві теми: «Рівняння, нерівності, системи», «Тригонометричні функції».  Необхідний теоретичний матеріал відповідає програмі з дисципліни «Математика»,  для вищих навчальних закладів І-ІІ рівнів акредитації, які здійснюють підготовку молодших спеціалістів на основі базової загальної середньої освіти затвердженої Міністерством освіти і науки України (2012 рік ).
Пропоновані рекомендації містять основні поняття та формули з даних тем. У них досить повно подані означення математичних понять, схеми розв’язування рівнянь, систем та нерівностей певних видів, наведено приклади розв’язування завдань.

Навчальний матеріал супроводжується схемами, графіками, рисунками, що дає змогу наочно ілюструвати його зміст.

Методичні рекомендації значно полегшать підготовку студентів по самостійному вивченню, допоможуть при підготовці до тематичних контрольних робіт, державної підсумкової атестації, зовнішнього оцінювання навчальних досягнень з математики.
Рівняння, нерівності, системи
Основні види рівнянь з однією змінною
Рівнянням називається рівність, яка містить змінну (невідоме).
Коренем (розв’язком) рівняння з однією змінною називається значення змінної, яке перетворює рівняння на правильну числову рівність.

Розв’язати рівняння означає знайти його корені або довести, що їх немає.

Областю допустимих значень (ОДЗ) рівняння називається множина значень змінної, при яких вирази в обох частинах рівняння є визначеними.

Два рівняння називаються рівносильними, якщо множини їхніх коренів збігаються.

Теореми про рівносильність рівнянь:
1. Якщо до обох частин рівняння додати одне й те саме число чи вираз із змінною, що не втрачає змісту за жодних значень змінної, то дістанемо рівняння, рівносильне даному.

2. Якщо з однієї частини рівняння перенести до другої частини доданок з протилежним знаком, то дістанемо рівняння, рівносильне даному.

3. Якщо обидві частини рівняння помножити або розділити на одне й те саме число, відмінне від нуля, чи на вираз із змінною, який не перетворюється на нуль за жодних значень змінної і не втрачає змісту на множині допустимих значень невідомого для даного рівняння, то дістанемо рівняння, рівносильне даному.

4. Якщо обидві частини рівняння піднести до непарного натурального степеня, то дістанемо рівняння, рівносильне даному.
Лінійні рівняння
Лінійним рівнянням з однією змінною [image: image2.png]


 називається рівняння виду [image: image4.png]


, де [image: image6.png]


 і [image: image8.png]


 – дійсні числа. Якщо [image: image10.png]a+0,



 то рівняння називається рівнянням першого степеня.

Якщо в лінійному рівнянні [image: image12.png]


, [image: image14.png]a+0,



 то рівняння має один корінь [image: image16.png].
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Якщо в лінійному рівнянні [image: image18.png]
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 то рівняння не має коренів.

Якщо в лінійному рівнянні [image: image22.png]


 
[image: image23.wmf]0,

a

=

 
[image: image24.wmf]0,

b

=

 то будь-яке значення 
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 є коренем рівняння.

Наприклад, розв’яжемо рівняння 
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Квадратне рівняння
Квадратним рівнянням називають рівняння виду [image: image33.png]ax? +bx+c= 0



, де  [image: image35.png]a,b,c



 – дійсні числа, [image: image37.png]a+0.



 Числа [image: image39.png]a,b,c



 – коефіцієнти рівняння. 
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Рівняння виду [image: image42.png]
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 де 
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, називають неповними квадратними рівняннями.

Схема розв’язування квадратного рівняння виду [image: image49.png]ax? + bx+ ¢
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Наприклад, розв’яжемо рівняння 
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Обчислимо дискримінант: 
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Оскільки 
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 то рівняння має два корені. Визначимо корені рівняння.
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Відповідь: 
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Схема розв’язування  квадратного рівняння виду [image: image69.png]ax?= 0,a # 0.
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Наприклад, розв’яжемо рівняння 
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Відповідь: 
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Схема розв’язування квадратного рівняння виду [image: image78.png]ax? + bx=0,a+ 0.
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Наприклад, розв’яжемо рівняння 
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Відповідь: 
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Схема розв’язування квадратного рівняння виду [image: image86.png]ax?+c¢ =0,
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Наприклад, розв’яжемо рівняння 
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Відповідь: 
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Зведене квадратне рівняння

Квадратне рівняння [image: image98.png]2 +bx+ ¢c=0,



 в якому перший коефіцієнт дорівнює 
[image: image99.wmf]1

, називають зведеним.
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Теорема Вієта
Теорема Вієта. Сума коренів зведеного квадратного рівняння
 [image: image103.png]x2+bx+c




 дорівнює другому коефіцієнту 
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b

 взятому з протилежним знаком, а добуток коренів дорівнює вільному члену 
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Наприклад, розв’яжемо рівняння 
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 − зведене квадратне рівняння. Розв’яжемо його за допомогою теореми Вієта:
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Відповідь: 
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Біквадратне рівняння
Рівняння 
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Рівняння виду [image: image114.png]ax* +bx®+ ¢ =0,a+0,



 називають біквадратним рівнянням. При його розв’язуванні роблять заміну 
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Наприклад, розв’яжемо рівняння 
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Відповідь: 
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Раціональне рівняння

Рівняння 
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 називають раціональним, якщо
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Щоб розв’язати раціональне рівняння, треба:

1) знайти спільний знаменник всіх дробів, що входять до рівняння;

2) замінити дане рівняння цілим, помноживши обидві його частини на спільний знаменник;
3) розв’язати одержане ціле рівняння;

4) виключити з коренів цілого рівняння ті, які перетворюють на нуль спільний знаменник. 

Наприклад, розв’яжемо рівняння 
[image: image129.wmf]2

263

1.

111

xxx

+-=

--+



[image: image130.wmf]
[image: image131.wmf](

)

(

)

(

)

2

22

2

2

2

2

263

1;

111

21613

11

11111

121631,

10;

xxx

xx

x

xxx

xxx

x

+-=

--+

--

×-+×-×=×

--+

ì

-++-=-

ï

í

-¹

ï

î


                                  
[image: image132.wmf]2

20,

1;

xx

x

ì

--=

í

¹±

î


                                  
[image: image133.wmf]12

2,1,

1.

xx

x

==-

ì

í

¹±

î


Відповідь: 
[image: image134.wmf]2.

x

=


Найпростіші рівняння з модулем
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Рівняння 
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 рівносильне сукупності рівнянь 
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Наприклад, розв’яжемо рівняння 
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Відповідь: 
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Розв’язати рівняння:
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Розв’язати рівняння: 
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Питання для самоперевірки
1) Означення рівняння.

2) Що означає розв’язати рівняння?

3) Які рівняння називаються рівносильними?

4) Теореми про рівносильність рівнянь

5) Лінійні рівняння з однією змінною.

6) Квадратні рівняння, способи їх розв’язування.

7) Неповні квадратні рівняння, способи їх розв’язування.

8) Біквадратні рівняння, способи їх розв’язування.

9) Раціональні рівняння, способи їх розв’язування.
10) Найпростіші рівняння з модулем, способи їх розв’язування.
Нерівності з однією змінною, їх види
Нерівністю зі змінною (невідомим) називають два вирази зі змінною (невідомим), між якими стоїть один із знаків нерівності:

 > (більше), < (менше), ≥ (більше або дорівнює; не менше), ≤ (менше або дорівнює; не більше).

Розв’язком нерівності називають значення змінної, яке перетворює його в правильну числову нерівність.    
Розв’язування нерівностей. Розв’язати нерівність з однією змінною означає знайти всі її розв’язки або довести, що розв’язків немає.
Нижче в таблиці наведено деякі числові підмножини, їх позначення, запис у вигляді нерівності.
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	 Нескінченний проміжок (промінь)
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Розв’язування нерівностей, як правило, зводиться до зміни даної нерівності нерівністю, яка їй рівносильна.

Нерівності, які мають одні й ті самі розв’язки, називають рівносильними. Нерівності, які не мають розв’язків, також вважають рівносильними.

Теореми про рівносильність нерівностей: 

1) Якщо з однієї частини нерівності перенести в другу доданок з протилежним знаком, то одержимо рівносильну їй нерівність.

Наприклад, нерівність 
[image: image178.wmf]23

x
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 рівносильна нерівності 
[image: image179.wmf] 1

x

>
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2) Якщо обидві частини нерівності помножити або поділити на одне й те саме додатне число, то одержимо рівносильну їй нерівність.

3) Якщо обидві частини нерівності помножити або поділити на одне й те саме від’ємне число, змінивши при цьому знак нерівності на протилежний, то одержимо рівносильну їй нерівність. 

Наприклад, нерівність 
[image: image180.wmf]210
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 рівносильна нерівності 
[image: image181.wmf](
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 тобто 
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4) Якщо обидві частини нерівності піднести до непарного натурального степеня і зберегти знак нерівності, то дістанемо нерівність, рівносильну даній.
5) Якщо перша нерівність рівносильна другій, а друга – третій, то перша нерівність рівносильна третій. 

Щоб розв'язати систему двох нерівностей з одним невідомим, потрібно розв'язати кожну із нерівностей окремо і взяти спільну частину множини всіх їх розв'язків.
Нерівності з однією змінною є таких видів: лінійні,квадратні, дробові, з модулем.
Різні методи розв’язування нерівностей з однією змінною
Лінійна нерівність з однією змінною
Лінійною нерівністю з однією змінною 
[image: image183.wmf]x

 називається нерівність виду 
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Схема розв’язування лінійної нерівності
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Квадратні нерівності
Схема розв'язування квадратних нерівностей:    

1. Знайти дискримінант 
[image: image209.wmf]D

, а потім корені 
[image: image210.wmf]12
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 квадратного тричлена (якщо вони існують).    

2. Побудувати ескіз графіка квадратичної функції 
[image: image211.wmf]2
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 (з урахуванням знака коефіцієнта 
[image: image212.wmf]a

 та знайденого знака дискримінанта 
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 і коренів).
3. Для випадку 
[image: image214.wmf]0
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 відповідно отримаємо проміжок, для якого точки параболи лежать вище осі 
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 для випадку 
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 відповідно отримаємо проміжки, для яких точки параболи лежать нижче осі [image: image218.png]
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Схема розв'язування квадратної нерівності залежно від 
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Дробові нерівності
Нерівність виду 
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Нерівність виду 
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 рівносильна двом системам нерівностей 
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Нерівність виду 
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[image: image260.wmf]()0,()0,

  

()0()0.

fxfx

³

gxgx

³£

ìì

íí

><

îî


Нерівність виду 
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Наприклад, розв’яжемо нерівність 
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 Відповідь: 
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Нерівності з модулем
Нерівність виду [image: image270.png]If(x)] < a(aea=0)



 рівносильна подвійній нерівності 
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Наприклад, розв’яжемо нерівність 
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Відповідь: 
[image: image276.wmf](
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Нерівність виду [image: image278.png]If(x)] > a(aea=0)



 рівносильна об’єднанню нерівностей
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Наприклад, розв’яжемо нерівність 
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Відповідь: 
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Нерівність виду 
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Наприклад, розв’яжемо нерівність 
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Відповідь: 
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Нерівність виду 
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 рівносильна системі нерівностей
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Наприклад, розв’яжемо нерівність 
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Відповідь: 
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Нерівність виду 
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 рівносильна нерівності 
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Наприклад, розв’яжемо нерівність 
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Відповідь: 
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Розв’язування раціональних нерівностей методом інтервалів
Щоб розв’язати нерівність 
[image: image300.wmf]()0 (()0)
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 потрібно:
1) знайти ОДЗ;
2) знайти нулі функції 
[image: image301.wmf](),

fx
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fx

=


3) позначити нулі на ОДЗ і знайти знаки 
[image: image303.wmf]()
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 у кожному проміжку, на які розбивається ОДЗ;

4) знайти відповіді, враховуючи знак заданої нерівності.

Наприклад, розв’яжемо нерівність 
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Розглянемо функцію 
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 (див. рисунок):
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Знайдемо нулі функції 
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Ці точки поділяють область визначення функції на інтервали, в кожному з яких функція зберігає постійний знак (див. рисунок):
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 (ставимо на рисунку знак 
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 над цим інтервалом).

Зверніть увагу: в умові 
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 показник степеня − парне число. Це означає, що знаки по різні боки від числа 
[image: image316.wmf]3

 однакові.

Решта показників степеня − числа непарні. Тому, переходячи через точки 
[image: image317.wmf]0; 5; 8,5,
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 знаки змінюємо на протилежні.

Обираємо проміжки, над якими стоїть знак
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. Нерівність нестрога, тому число 
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Відповідь:
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Розв’язати нерівності методом інтервалів:
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Розв’язати нерівності:
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Питання для самоперевірки
1) Означення нерівності.

2) Позначення числових підмножин.

3) Рівносильні нерівності.

4) Теореми про рівносильні нерівності.

5) Види нерівностей.

6) Методи розв’язування нерівностей:

  а) лінійних;

  б) квадратних;

  в) дробових;

  г) з модулем;

Системи нелінійних рівнянь, їх види
Системою рівнянь називається група з двох або кількох рівнянь, в яких однойменні невідомі позначають одну і ту ж величину.
Розв’язком системи двох рівнянь з двома невідомими називається пара значень змінних, яка перетворює кожне рівняння системи в правильну рівність.
Розв’язати систему двох рівнянь з двома змінними – означає знайти всі розв’язки цієї системи або довести,що вона не має розв’язків.

Многочлен, всі члени якого однакового степеня, називається однорідним многочленом. 

Многочлени першого, другого і третього степенів називаються лінійними, квадратичними, кубічними, а відповідно до кількості змінних двійковими (бінарними), трісковими (тернарними).
Розглянемо способи розв’язування нелінійних систем.
Методи розв’язування систем нелінійних рівнянь
1. Розв’язування систем нелінійних рівнянь з двома змінними способом підстановки.
2. Розв’язування систем нелінійних рівнянь з двома змінними методом введення нової змінної.

3. Розв’язування систем нелінійних рівнянь з двома змінними способом алгебраїчного додавання.

4. Розв’язування систем нелінійних рівнянь з двома змінними способом почленного ділення.

5. Розв’язування систем нелінійних рівнянь з двома змінними графічним способом.
1. Розв'язування систем нелінійних рівнянь з двома змінними способом підстановки:
1) виразити з одного рівняння системи одну змінну через другу;

2) підставити знайдене значення в друге рівняння системи й дістати рівняння відносно другої змінної;
3) розв’язати одержане рівняння і знайти значення цієї змінної;

4) підставити знайдені значення у вираз для першої змінної і дістати її відповідні значення;

5) записати відповідь.

Приклад: 
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2,

2150;

xy

yy

=+

ì

í

+-=

î



[image: image330.wmf]12

2,

5, 3.

xy

yy

=+

ì

í

=-=

î


Отже,
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Відповідь: 
[image: image333.wmf](3;5),(5;3).
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2. Розв'язування систем нелінійних рівнянь з двома змінними методом введення нової змінної.
При розв’язуванні систем нелінійних рівнянь, як правило, використовуються різні комбінації декількох методів розв’язування систем, зокрема метод введення нової змінної.

Приклад:
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 Нехай 
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тоді 
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Тоді маємо 
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Відповідь: 
[image: image343.wmf](
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3. Розв'язування систем нелінійних рівнянь з двома змінними способом алгебраїчного додавання.
Щоб розв’язати систему нелінійних рівнянь з двома змінними способом алгебраїчного додавання, треба:

1) зрівняти коефіцієнти при одній зі змінних (при виразах) шляхом почленного множення обох рівнянь на множники, дібрані відповідним чином;

2) додати (або відняти) почленно рівняння системи, виключивши одну із змінних;

3) розв’язати одержане рівняння з однією змінною;

4) знайти значення другої змінної в такий самий спосіб (або підстановкою знайденого значення змінної в будь-яке із заданих рівнянь системи);

5) записати відповідь.

Розв’язати систему:


[image: image344.wmf]32

23

3158,

3185.

xxy

xyy

ì

+=

ï

í

+=-

ï

î


Після послідовного додавання рівнянь системи, а потім віднімання від першого рівняння системи другого, дістанемо два нових рівняння, які утворюють систему, рівносильну даній:
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Скористаємось формулами скороченого множення:
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З рівності кубів двох степенів випливає рівність основ. Дістанемо рівносильну систему:
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Відповідь: 
[image: image349.wmf](
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4. Розв'язування систем нелінійних рівнянь з двома змінними способом почленного ділення.
Розв’язати систему:
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Поділимо перше рівняння на друге. Скоротимо на (x-y). Тоді рівняння набере вигляду:
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звідки 
[image: image352.wmf]22
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Поділимо обидві частини на 
[image: image353.wmf]2
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 Дістанемо:
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Введемо нову змінну 
[image: image355.wmf]x
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Доповнимо кожне з останніх рівнянь одним з рівнянь системи, що пропонувалась. Дістанемо дві системи:
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 або 
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Розв’яжемо ці системи способом підстановки, дістанемо:
[image: image362.wmf]1
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Відповідь: 
[image: image364.wmf](
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5. Розв'язування систем нелінійних рівнянь з двома змінними графічним способом.
Щоб розв'язати систему нелінійних рівнянь з двома змінними графічним способом треба:

1) виконати рівносильні перетворення системи так, щоб зручно було побудувати графіки рівнянь системи;

2) побудувати в одній системі координат графіки;

3) знайти координати точок перетину побудованих графіків. Ці координати і є розв’язками системи рівнянь. 

Розв’язати систему:
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[image: image367.png]



Відповідь: 
[image: image368.wmf](
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Розв’язати графічно систему рівнянь:
[image: image1.png]
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Розв’язати систему рівнянь:
[image: image686.wmf]2
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Питання для самоперевірки
1) Що називається системою рівнянь?

2) Що таке розв’язок системи рівнянь?

3) Що означає розв’язати систему рівнянь?

4) Які є види систем рівнянь?

5) Методи розв’язування систем нелінійних рівнянь:

    а) спосіб підстановки;

    б) метод введення нової змінної; 
    в) спосіб алгебраїчного додавання;

    г) спосіб по членного ділення;

    д) графічний спосіб.
ІІ. Тригонометричні функції
Тригонометричні функції кута
Синусом гострого кута 
[image: image371.wmf]a

 прямокутного трикутника (позначається 
[image: image372.wmf]sin

a

) називається відношення протилежного катета 
[image: image373.wmf]c

 до гіпотенузи 
[image: image374.wmf]a

:

[image: image375.wmf]sin
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Косинусом гострого кута 
[image: image376.wmf]a

 прямокутного трикутника (позначається 
[image: image377.wmf]cos

a

) називається відношення прилеглого катета 
[image: image378.wmf]b

до гіпотенузи 
[image: image379.wmf]a

:

[image: image380.wmf]cos
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Тангенсом гострого кута 
[image: image381.wmf]a

 прямокутного трикутника (позначається 
[image: image382.wmf]tg
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) називається відношення протилежного катета 
[image: image383.wmf]c

 до прилеглого 
[image: image384.wmf]b
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[image: image385.wmf]tg
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[image: image386.png]



Котангенсом  гострого кута 
[image: image387.wmf]a

 прямокутного трикутника  (позначається 
[image: image388.wmf]ctg

a

) називається відношення прилеглого катета 
[image: image389.wmf]b

до протилежного 
[image: image390.wmf]c
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[image: image391.wmf]ctg

b

c

a

=

.
Було доведено, що синус і косинус гострого кута трикутника залежить лише від значення кута і не залежить від довжини сторін трикутника, його розміщення, тобто синус, косинус, а отже, і тангенс є функціями кута. Пізніше для кутів від 
[image: image392.wmf]0

o

до 
[image: image393.wmf]180
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 означення цих функцій було виведено за допомогою кола з радіусом 
[image: image394.wmf]R

у системі координат (координатний спосіб означення).   
[image: image687.wmf]2
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Синусом кута 
[image: image395.wmf]a

 називається відношення ординати y точки 
[image: image396.wmf](;)
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кола до його радіуса 
[image: image397.wmf]R

(див. мал.):

[image: image398.wmf]sin
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Косинусом кута 
[image: image399.wmf]a

 називається відношення абсциси 
[image: image400.wmf]x

 точки 
[image: image401.wmf](;)
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кола до його радіуса 
[image: image402.wmf]R

(див. мал.):

[image: image403.wmf]cos
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Тангенсом кута 
[image: image404.wmf]a

 називається відношення ординати y точки 
[image: image405.wmf](;)
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кола до абсциси 
[image: image406.wmf]x

 цієї точки. (див. мал.):

[image: image407.wmf]tg
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Котангенсом кута 
[image: image408.wmf]a

 називається відношення абсциси 
[image: image409.wmf]x

 точки 
[image: image410.wmf](;)
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кола до ординати y цієї точки (див. мал.):

[image: image411.wmf]ctg
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Для 
[image: image412.wmf]tg
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 кут 
[image: image413.wmf]90
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 виключають, бо при 
[image: image414.wmf]90

a

=

o

 абсциса дорівнює 
[image: image415.wmf]0,

 а ділити на 
[image: image416.wmf]0

 не можна.

При такому означенні тригонометричних функцій 
[image: image417.wmf]sin901
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[image: image418.wmf]cos900,
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[image: image419.wmf]sin1800
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[image: image420.wmf]cos1801, tg1800.
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 якщо взяти до уваги, що промені, які збігаються, утворюють кут 
[image: image421.wmf]0
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, то 
[image: image422.wmf]sin00, cos01, tg00.
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Нагадаємо, що для будь – якого кута 
[image: image423.wmf]0180

a

<<

oo

:
[image: image424.wmf]sin(180)sin,
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[image: image425.wmf]cos(180)cos.
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 Для кута 
[image: image426.wmf]90: tg(180)tg.
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Радіанне вимірювання кутів
Відомою одиницею вимірювання кутів є градус – кут, що дорівнює 
[image: image427.wmf]1
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 розгорнутого кута. Отже, градусна міра прямого кута дорівнює 
[image: image428.wmf]90

o

, повного – 
[image: image429.wmf]360

o

. 

Крім градусів існують інші одиниці вимірювання кутів. Використовують таку одиницю вимірювання кутів, як радіан. 

Радіан – це центральний кут, що відповідає дузі кола, довжина якої дорівнює довжині радіуса цього кола.

Радіанна і градусна міри кута пов’язані між собою певною залежністю.


[image: image430.wmf]180
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[image: image431.wmf]180
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Встановлені співвідношення дають змогу переходити від градусної міри до радіанної і навпаки.

В даній таблиці наведені радіанні міри деяких найуживаніших кутів.
	Градус
	30
	45
	60
	90
	120
	135
	150
	180
	270
	360

	Радіан
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Приклад 1.
Визначити радіанну міру кута 
[image: image442.wmf]108
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Маємо А
[image: image443.wmf]180
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[image: image445.wmf]3,14
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[image: image446.wmf]3
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(рад), коли вважати, що градусна міра задана точним значенням.
Приклад 2. 
Визначити градусну міру кута, радіанна міра якого наближено дорівнює 2,3 рад. 

Маємо 
[image: image447.wmf]180
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[image: image448.wmf]2,3180

a

p

×

=

o

o

; при 
[image: image449.wmf]3,14

p

»

,
[image: image450.wmf]2,3180

132130

3,14

a

×

»»»

o

ooo

.
Вправи

1.Записати у радіанній мірі кути: 
[image: image451.wmf]15,2230,51,15730,162

¢¢
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2. Записати у градусній мірі кути, виміряні у радіанах:
[image: image452.wmf]2610

;;;1,5;2,50.
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Питання для самоперевірки
1) Сформулювати означення тригонометричних функцій гострого кута у прямокутному трикутнику.

2) Сформулювати означення синуса і косинуса довільного кута.

3) Як означаються тангенс і котангенс кута?

4) Які існують системи вимірювання кутових величин?

5) Що таке радіан?

6) Яка існує залежність між градусною і радіанною мірами кута?

Тригонометричні функції числового аргументу
Вимірюючи кути в радіанах, найменування одиниці вимірювання біля числа, що характеризує міру кута, зазвичай не пишуть. Кажуть: «кут дорівнює 
[image: image453.wmf]4
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» замість «кут дорівнює 
[image: image454.wmf]4
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 радіана»; «кут дорівнює 
[image: image455.wmf]100

» замість «кут дорівнює 
[image: image456.wmf]100

 радіанів» і т. д. Виходячи з цього, запис 
[image: image457.wmf]sin


[image: image458.wmf]2
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 слід розуміти як синус кута, що дорівнює 
[image: image459.wmf]2
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 рад, 
[image: image460.wmf]tg4,2

 – як тангенс кута, що дорівнює 
[image: image461.wmf]4,2

 рад.

Уведення радіанної міри кута дає змогу зображати будь-яке число точкою одиничного кола. Розглянемо, як це можна зробити.

Домовилися, що точка A – кінець початкового радіуса – зображає число 
[image: image462.wmf]0

 (мал.). Для зображення будь-якого іншого дійсного числа a будують рухомий радіус OB, який утворює з початковим радіусом OA кут a рад. Точка B – кінець рухомого радіуса – зображає на одиничному колі число a.

                                 [image: image463.png]



Зокрема, на малюнку точка В зображає число 
[image: image464.wmf]2,5

 (
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 рад). Очевидно, що цією точкою зображується не лише число 
[image: image466.wmf]2,5,

 а й усі числа виду 
[image: image467.wmf]2,5  2
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, де k – ціле число. Точка C зображає число 
[image: image468.wmf]2
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, бо 
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 рад ≈ 
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 рад. Цією самою точкою зображуються всі числа виду 
[image: image472.wmf] 2,
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 де k — ціле число.

Водночас, маючи точку на одиничному колі, можна знайти множину чисел, які вона зображає. Одне з таких чисел, очевидно, дорівнює радіанній мірі одного з кутів (наприклад, найменшого додатного), що їх утворює рухомий радіус, проведений до цієї точки, з початковим радіусом. Додавши до знайденого в такий спосіб числа 
[image: image473.wmf]2,
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 де k
[image: image474.wmf]Î
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, одержимо вираз, що задає множину шуканих чисел. Надаючи k певного значення, діставатимемо відповідне число. Очевидно, що будь-яка точка одиничного кола зображає безліч дійсних чисел, що їх можна знайти описаним способом.

Досі ми розглядали тригонометричні функції, аргументом яких був кут. Але в багатьох процесах, які можна описати тригонометричними функціями, змінною є не лише кут, а й час, температура, довжина тощо. У зв’язку з цим домовились абстрагуватися від природи аргументу і розглядати тригонометричні функції просто як числа, розуміючи, наприклад, під синусом числа 
[image: image476.wmf]3,7

 синус кута, що дорівнює 
[image: image477.wmf]3,7

 рад; під тангенсом числа –
[image: image478.wmf]0,8

 тангенс кута, що дорівнює –
[image: image479.wmf]0,8

 рад, тощо.
З такого розуміння тригонометричних функцій числового аргументу випливає, що синус і косинус певного числа дорівнюють відповідно ординаті й абсцисі точки, що зображає це число на одиничному колі, а його тангенс і котангенс – ординаті й абсцисі відповідних точок лінії тангенсів і лінії котангенсів.

З означення випливає, що синус і косинус числового аргументу існують за будь-якого дійсного 
[image: image480.wmf].
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Беручи до уваги, що 
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 доходимо висновку, що функція тангенс не існує, якщо 
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 Це справедливо для всіх чисел, які зображуються на одиничному колі кінцями вертикального діаметра, тобто чисел 
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. Кожне з них можна утворити множенням 
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 на додатне чи від’ємне непарне число. Справді, 
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 і т. д. Відомо, що непарні числа записують у вигляді 
[image: image487.wmf](21)
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, де k — ціле число. Отже, множину чисел, для яких тангенс не має змісту, можна записати у вигляді 
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 де k – ціле число. Часто трапляється і такий запис цієї множини: 
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 де k – ціле число. Щоб пересвідчитися, що обидва вирази позначають одну й ту саму числову множину, достатньо, наприклад, розкрити дужки у виразі 
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 EMBED Equation.DSMT4  [image: image491.wmf](21).
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Оскільки йшлося про множину чисел, косинус яких дорівнює 
[image: image492.wmf]0,

 то можна сказати, що розв’язком рівняння 
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 є числа виду 
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 EMBED Equation.DSMT4  [image: image495.wmf](21), 
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Зважаючи, що 
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, доходимо висновку: числова функція котангенс не існує для тих 
[image: image497.wmf]x

, за яких 
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. Ці числа зображуються кінцями горизонтального діаметра одиничного кола і дорівнюють 
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 і т. д., тобто це числа виду 
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, де 
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 – ціле число.

Аналогічно розв’язок рівняння 
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Для будь-якого значення 
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 при якому існує відповідна тригонометрична функція, справджуються рівності:
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Значення тригонометричних функцій деяких чисел (кутів) систематизовано в таблиці. 
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	Не існує
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	Не існує
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	Не існує
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	Не існує
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	Не існує


Синусом числа 
[image: image556.wmf]a

 називається ордината точки 
[image: image557.wmf]B

 одиничного кола, в яку переходить початкова точка 
[image: image558.wmf](1;0)

A

 під час повороту навколо центра кола на кут 
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 рад, і позначається 
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Косинусом числа 
[image: image561.wmf]a

 називається абсциса точки 
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 одиничного кола, в яку переходить початкова точка 
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 під час повороту навколо центра кола на кут 
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 рад, і позначається 
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Тангенсом числа 
[image: image566.wmf]a

 називається відношення 
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, а котангенсом числа 
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 – відношення 
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, і позначаються вони відповідно 
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Вправи
1. Який знак має вираз:
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2. Знайти значення виразу :

[image: image572.wmf]13

1) 3cossinctg;

222

1

2) 2sin2tgcos;

3424

3) 2sincostg;

646

4) tgsincos;

346

pp

p

ppp

ppp

ppp

-+

-+

-+

-+

 

[image: image573.wmf]3

5) 3tg()ctgsin4cos;

6324

pppp

-×+-



[image: image574.wmf]6)  2tgctg()cos2sin.

364

ppp

p

×-+-


Питання для самоперевірки
1) Сформулювати означення синуса і косинуса довільного числа.

2) Як означаються тангенс і котангенс числового аргументу? Яка геометрична інтерпретація їх на одиничному колі?

3) Назвати числові значення тригонометричних функцій чисел 
[image: image575.wmf], , .
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Основні співвідношення між тригонометричними функціями одного аргументу
Тригонометричні функції пов’язані між собою численними співвідношеннями, що виражаються відповідними тотожностями. Перша серія тотожностей описує зв’язок між тригонометричними функціями одного й того самого аргументу.

З курсу геометрії вам відомо, що для будь-якого гострого кута 
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Цю рівність було встановлено за теоремою Піфагора. Використовуючи дану теорему, можна довести, що рівність (1) виконується для будь-якого кута, а отже, і числового аргументу.

За означенням тангенса і котангенса: 
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Помноживши почленно рівності (2) і (3), дістанемо:
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Поділивши почленно рівність (1) на 
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і поділивши почленно (1) на 
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Рівності (1) – (6) є тотожностями, оскільки вони правильні для всіх тих значень аргументу, за яких ліва і права частини мають зміст.

Рівність (1) правильна для будь-яких значень 
[image: image585.wmf].
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 Рівність (2) правильна для всіх значень 
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 Рівність (3) правильна для всіх значень 
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 Рівність (4) правильна для всіх значень 
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 за яких обидва вирази 
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 мають зміст. Рівність (5) правильна, якщо 
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 а рівність (6), – якщо 
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Розглянуті рівності називають основними тригонометричними тотожностями.

У таблиці подано формули, які пов’язують тригонометричні функції одного й того самого аргументу. 
	Функція
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Розглянемо застосування цих тотожностей.

Приклад . 
Знайдіть 
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Розв’язання. Знайдемо 
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 З формули 
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 дістанемо: 
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 Відомо, що існують два протилежних числа, квадрат яких дорівнює даному додатному числу. Яке з них узяти в нашому випадку? Оскільки 
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 є кутом ІІ чверті, то його косинус від’ємний.

Маємо: 
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Знаючи синус і косинус, знаходимо тангенс і котангенс:
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Для знаходження котангенса застосуємо формулу 
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Вправи

1. Знайдіть 
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3. Спростити вираз:
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4. Довести тотожність:
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Питання для самоперевірки
1) Назвати основні тригонометричні тотожності.
2) Вивести формули, які пов’язують тригонометричні функції одного й того самого аргументу.
Формули зведення
Формулами зведення називають формули, що виражають тригонометричні функції кутів (чисел) 
[image: image632.wmf]3
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 через тригонометричні функції кута (числа) 
[image: image633.wmf],
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 де 
[image: image634.wmf]a

 – довільний кут (число).

Формули зведення мають велике практичне застосування. За їх допомогою можна подати значення тригонометричних функцій будь-якого кута (числа) через значення відповідних тригонометричних функцій гострого кута або числа з проміжку 
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 Це дає змогу обмежитися складанням таблиць значень тригонометричних функцій тільки для гострих кутів.

Щоб записати будь-яку формулу зведення, коли 
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 корисно знати такі  правила:

1) якщо кут 
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 добудовується відносно вертикального діаметра (це кути, що відповідають числам 
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), то назва даної функції змінюється на кофункцію (синус на косинус, тангенс на котангенс і навпаки); якщо кут 
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 добудовується відносно горизонтального діаметра (це кути, що відповідають числам 
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), то назва даної функції не змінюється;

2) перед утвореною функцією ставиться той знак, який має функція, що перетворюється за формулою зведення.
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Розглянемо застосування цих формул.

Приклад . 
Обчисліть за формулами зведення: 
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Розв’язання.

[image: image681.wmf]3

1) cos210cos(18030)cos30;

2

=+=-=-

oooo


                                
[image: image682.wmf]3

2) tgtg()ctg1.

4244

pppp

=+=-=-


Вправи
1.Обчисліть за допомогою формул зведення:
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2. Знайти значення виразу:
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Питання для самоперевірки
1) Що таке формули зведення? Укажіть види кутів (чисел), для яких ці формули встановлено.

2) Для яких кутів (чисел) назва функції, яку зводять, не змінюється, а для яких – змінюється?
3) Як визначити знак перед функцією, до якої зводять дану функцію? 
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